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XXI, On FrrMAT'S Theorem of the Polygonal Numbers,
By Sir FrEDERICK PoLrock, F.R.S., Lord Chief Baron, &e. &e.

Received in abstract July 11, 1860, in full April 25, 1861,—Read May 2, 1861.

FerMAT'S theorem of the polygonal numbers has engaged the attention of some of the
most eminent mathematicians. It was first announced (about the year 1670) in his
edition of Diophantus, published after his death (it occurs in a note on the 81st question,
p- 180). It is to be found stated at length in LreENDRE’s ¢ Théorie des Nombres’ (in
p- 187 of the 2nd edition, &c.). For above a century after it appeared, no proof was
discovered of any part of it; but in 1770 LacrangE (in the Transactions of the Royal
Academy of Sciences at Berlin) gave a proof of the-second branch of the theorem (the
case of the square numbers), from the paper containing which it may be collected that
FEurer had endeavoured in vain to establish a proof, but had suggested the clue by
which LAGRANGE succeeded in discovering one.

- In the second volume of EULER’s ¢ Opuscula Analytica,’ there is an article on this sub-
ject, of some length, lamenting the loss of FERMATS investigations, and pointing out
that LAGRANGE’S proof as to the square numbers affords (from its nature) no assistance
to the discovery of a proof of the other cases; he adds, “sine dubio plerique Geometrae
in his demonstrationibus investigandis frustra desudaverint.”

About twenty-five years after the death of EvLER (who died in 1783), LEGENDRE, in
his ¢ Théorie des Nombres,” published a proof of the first branch of the theorem (the
case of the triangular numbers), which proof is in part inductive, and not founded on
pure demonstration; and subsequently M. Cavcny discovered a proof of all the cases
(assuming the first and second cases to be proved); this was published about the year
1816, in a Supplement to LEGENDRE’S ¢ Théorie des Nombres.’

" FrrMaT, after stating the proposition, alludes to the proof of it as arising out of
“many various and abstruse mysteries of mumbers;” and he states his intention to
“rite an entire book on.the subject, and very much to advance the bounds of arithmetic.”
No such work has appeared; and it is understood that among his papers no trace has
been found of any materials for such a publication. It becomes a matter of more than
mere curiosity to consider what could have been the properties of numbers alluded to;
obviously they must have been connected, more or less, with the division of numbers
into squares or other polygonal numbers.

The general object I have in view is to investigate the properties of numbers on
which FErMATS theorem depend. In this paper I wish to call attention to some pro-
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410 SIR F. POLLOCK ON FERMAT’S THEOREM OF THE POLYGONAL NUMBERS.

perties connected with the division of numbers into 4 squares, which probably (in some
form) were part of the system to which FEryat alluded.

I have already stated two properties of the odd numbers (not, I believe, noticed
before), upon one of which the whole of FrrymaT’s theorem depends (as will hereafter
appear). The first is to be found in the Transactions of the Royal Society for the year
1854, p. 313; it is there called Theorem C.

“ Every odd number may be divided into square numbers (not exceeding 4), the alge-
braic sum of whose roots (positive or negative) will (in some form of the roots) be equal
to every odd number from 1 to the greatest possible sum of the roots.

“Or in a purely algebraic form. If

A+ d2=2n+1,
v a+b +4c +d =2r41,
a, b, ¢, d being integral or nil, # and 7 being positive, and 7 a maximum, then if #' be

any positive integer (not greater than r), it will always be possible to satisfy the pair of
equations

and

w2ty =2n+41
w4z +y +2=2r'+1,
by integral values (positive, negative, or nil) of w, &, , 2.”

The other is to be found in the Royal Society’s Transactions for 1859, p. 49, and
relates not to the sum of the roots, but to the difference between two of them. The
first of these connects together the first and second branch of FERMAT'S theorem.

For if every odd number can be divided into 4 square numbers, so that the sum of
the roots of two of them being deducted from the sum of the roots of the other two,
there shall be a remainder of 1,—

Then every number is divisible into 3 triangular numbers; for the 2 sums of the roots
must be of the form 2¢-+1, and 2¢, and the four roots will be of the form

a+p+1, a—p, a+yg, a—g;
and if 2n4-1 equals the sum of these roots squared,
n+1=4a’42p*+2¢°+2a+2p+1, and n=20"+a+4p*+p-+¢*;
but 2¢’+-a is a triangular number, and p*+p-+¢* is the general form for the sum of any
2 triangular numbers*; therefore n any number is equal to 3 triangular numbers (nil
being considered as a triangular number, as some of the terms may become equal to
nothing).

There are some theorems worthy of remark arising out of a comparison of the differ-
ences of the roots of the four square numbers into which every odd number may be
divided.

It will appear from the Table that accompanies this paper, that when a number of
the form 4n--1 is divisible into 2 square numbers (of which one must be even and the
other odd, 4n+1 being an odd number), the roots of these 2 squares furnish the exte-

* The proof of this is given presently.
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rior differences of the roots of the four squares into which 2n-1 may be divided. Before
explaining the Table, it is proper to state that if an odd number be divisible into 4 square
numbers, three of them must be odd, and one of them even, or one of them must be odd,
and 3 of them even, otherwise their sum cannot be an odd number; it follows from this
that if the difference between any two of them be an odd number, the difference between
the other two must be an even number, and vice versd; for let a®*+0*+c*+d*=2n+1,
then if &’—8*=2p, ¢’—d* must equal 2¢+41; if possible let ¢*—d’=2r, then
@—b+c—d*=2p+2r; add 20°424d* (an even number) to each, and @’+8*+-c*+d?
will be an even number, which by the hypothesis it is not; if, therefore, a>—&* be an
even number, ¢>—d* cannot also be an even number, and therefore must be an odd
one. If, therefore, the four roots of the squares into which any odd number may be
divided are arranged in any order there will be three differences; the two exterior
differences will be one odd, the other even; the middle difference may be either odd or
even.

The Table is arranged thus :—the lowest row of figures is the series 1, 5, 9, 13, 17, &c.
(4n—1); the next row above is the series of natural numbers, 0, 1, 2, 3, 4, &c. (n), &c.;
the next row is 1, 3, 5, 7, 9, &c. (2r+1) the odd numbers; each of the odd numbers is
the first term in a series increasing upwards by the numbers, 2, 4, 6, 8, 10, &c., forming
an arithmetic series of the second order (the first and second differences being respectively
2 each); when the number in the lowest row cannot be divided into 2 squares, the
arithmetic series is not formed, and the square spaces are marked with an asterisk, but
when the number 4n+1 is divisible into two square numbers, the roots of these squares
constitute the two exterior differences of the roots into which the odd numbers may be
divided, and also of the roots into which each term of the series increasing upward may
be divided; the middle difference of the roots will be the smaller half of the sum of the
2 roots of the square numbers into which 4n+41 may be divided, with a negative sign,
and will increase by 1 in each successive term of the upward series.

For example, in the Table take the number 29 in the lowest row, 7x 44+1=29, 7 is
the number above it, and 7 X 2-41=15 the odd number, which is the first term of the
series 15,17, 21, 27, 35, &c. Now 29 is composed of 2 square numbers, 4 and 25, whose
roots are 2 and 5, 245="T; the smaller half is 3, and 2, —3, 5 will be the differences
of the roots of the squares into which 15 may be divided, and whose sum will equal 1;

thus
2, -3, 5
-1,1, =2, 3;
the roots when squared and added together equal 15, and the other terms of the series

follow in like manner, obeying the law indicated ; thus

5, —2, 2
—3, 2, 0, 2 when squared and added . . =17

2, —1, &
—2, 0, —1, 4 when squared and added . =21
MDCCCLXI. 3L
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5 0, 2
—4, 1,1, 3 when squared and added . =27

2, .1, 5
—3, —1, 0, 5 whose squares . . . . =3b

The proof of all this depends on a property of numbers mentioned in the Philosophical
Transactions for 1854, vol. cxliv. p 317.

If any number be composed of two triangular numbers, it will also equal a square and
a double triangular number. If

%=a2+a+b2+b,
2 2

it will be of the form a’4-a+4%*, and may be assumed equal to o*+4a-+4*. For if 2
numbers be both odd or both even, they may always be represented by ¢+b and a—&;
if one be odd and the other even, they may always be represented by a+6+1 and
a—b, or by a+b and a—b+1; and if the two numbers be made the bases of trigonal
numbers, the sum of the two trigonal numbers will always be of the form a*+4a--8% or
@’+b4-0*: now when any number in the natural series of numbers is composed of two
triangular numbers, it may be represented by &’+4a-4°, and 4n-1 will then equal
4a’+4a+1+446°,—obviously the sum of an odd and an even square, whose roots are
26 and 2a+1; and 2n--1, the corresponding odd number, will equal 2¢°+42a+41-4 287,
—obviously composed of 4 square numbers, whose roots are 4, b, @, a+1; and if they
be arranged thus,

26, —(a+0) 2a+1
—b, b, —a, a+1,
so that the sum of their roots may equal 1, the exterior differences of the roots will be
26 and 2a--1, the roots of the two squares into which 4n -1 is divisible ; and the middle
difference will be —(a+-8), the smaller half of the sum of the roots (2042e¢+1) with a
negative sign; if the exterior differences be reversed and the middle difference be
increased by 1, the differences will be 241, —(a+5b—1), 25, and the roots whose sum
will equal 1 will be, with their differences above them,

2a+1, —(a+40—1), 25
—(a+1), a— (0—1), 041,

and the sum of the squares of the roots will be 2 more; from these two sets of roots all
the rest may be obtained, by adding one to each of two roots and subtracting 1 from
each of the other two roots; the exterior differences of the roots will therefore always
be the same, and the middle difference will increase by 1 at each step; the sum of the
squares of the roots will increase by

2, 4, 6, 8, &c.

As the sum of any two square numbers of which one is odd and the other even
(42°+4a+14-40*) must be of the form 4n-+1, every possible case of an odd square
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combined with an even square must occur somewhere in the series
1, 5,9, 13, &ec.,

and the Table (if extended) must contain every possible case of odd and even numbers
as exterior differences, combined with every possible and available middle difference;
for negative differences may be rejected, inasmuch as, if the roots be put according to
their algebraic value, all the differences must be positive; thus the roots and differences
of 15 above were
2, -3, 5

—-1,1, —2, 3;
if the roots be placed according to their algebraic value, they would be —2, —1, 1, 3,
and with the differences above e

-2, —=1,1,3;
15 will therefore be found in the column above 5, and in the fourth place. The Table
(extended indefinitely) would therefore contain every possible odd number the sum of
whose roots may equal 1.

In connexion with the Table just mentioned, it may be well to state a theorem
respecting the differences of the roots, by which, having obtained one division of an odd
number into 4, or 3 squares (equal to, or greater than 1, and not more than 2 of them
equal to each other), other modes of dividing the odd number into 4 squares may
generally be obtained.

Theorem.

If any number be composed of 3 squares, and the roots be arranged in the order of
their algebraic value, if the two differences between the adjoining roots differ by 3, or
a multiple of 3, then by reversing the differences and obtaining roots whose algebraic
sum shall equal the sum of the former roots, but whose differences shall be reversed,
another form of division into squares will be obtained; that is, the sum of the squares
of the roots thus obtained will be equal to the sum of the squares of the first roots.

Ezample.

[Note.—I use the symbol 2 to indicate that the numbers below it are to be
considered as roots which are to be squared and added together; thus, 100=6°4-8*;

therefore 101:6, 1, 6, 8]

5 2
The differences of 1, 6, 8 are 5, 2, which differ by 3. If, now, roots be obtained
with differences 2, 5, and whose sum will equal 14648=19, the sum of the squares

2 5
of these roots will equal 101. 2, 4, 9 are roots having the differences reversed, and
their sum =15 ; therefore 224+424-9°=1246248=101. Again, leaving out 6 as a

2

1 7
root, 66=0, 1, 8; the differences are 1, 7; the sum of the roots =9: —2, 5, 6 are
3L2
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roots having the same sum but the differences reversed, and the sum of their squares

p I ; 7 4
44-25436=065; therefore 66=2, 5, 6. Again, —5, 2, 6 have the differences 7, 4;
4 7
their sum =3; but —4, 0, 7 have the differences reversed and the same sum ; therefore

Y a7 9
—5,2, 6=—4, 0, 7=65, and 101=0, 4, 6, 7.

The proof of this theorem will appear from putting the general case algebraically,
which also will show the method of obtaining the new roots required. ILet the dif-
ferences of the roots be represented by @, a+3n (which include every case); then
(p);, “(p+a), “**(p+2a+3n) will represent any 3 roots having the required differ-
ences; the sum of these roots is 8p+8a+3n [@ multiple of 8]: reverse the differences
and take p as the first root, and they will be —p, “***(p4a+3n), “p+2a-+3n; the sum
will be 3p+3a+6n [also a multiple of 3]; therefore the difference will be a multiple
of 3, and the sums may be made equal (one to the other) by adding or subtracting from
each root the difference divided by 3: here the difference is 3n, and the new roots will
be p—n, ““**p-t+a+2n, p+2a4-2n; and if each of these sets of roots be squared and
added together, the sum of each will be 3p*+ 54’4 9n*4-6ap+6np+12an.

A similar theorem belongs to 4 roots whose differences differ by 4: thus 1, 2, 7, 16,
as roots, have the differences 1, 6, 9; their sum is 26: —3, 6, 11, 12 have the differ-
ences reversed, 9, 8, 1; and their sum also equals 26 ; and

T5 9 S e w a B R BN T
1,2,7,16=-3, 6,11, 12=310: so —6, —5, 0, 13=—12, 1, 6, 7=230,
the sum of the roots in each case being equal, and the differences reversed.

A similar theorem also belongs to 6 roots whose differences differ by 6, and no doubt
to m roots whose differences differ by n.

There are many arithmetic series of the 2nd order which, beginning with 1 as a first
term, will have all their terms divisible into not exceeding four squares;. there are 3
such series to which T wish to call attention. If 1 be increased by 2, 4, 6, 8, &c., the

e
(n+1)th term of the series is always n’4n+1, or 4n°+2n-+1, that is, n, n, n, n+1.
If 1 be increased by 2, 6, 10, 14, &c., the (n+1)th term will always be 6, 1, n, n.

If 1 be increased by 4, 8, 12,16, &c., the (n+1)th term will be 6, 0, n, n-+1. The first
of these series contains the numbers which, being divided into 4 squares, give the sum
of the roots a maximum ; the others give the differences between 2 roots a maximum,
the one the even differences, the other the odd differences.

But if any odd number (instead of 1) be made the first term of the series, some
remarkable consequences ensue. If any odd number 4»7F1 be increased by 2, 4, 6, 8,
&c., the term whose index of place is the lesser moiety of the odd number will be com-
posed of 4 squares, whose roots will be the result of again dividing the moieties of the
odd number; thus 4nF1=2nTF1+420=nTF1l+n+n+n; if the number be 4n—1,

the (2%—1)th'térm will be (2n—1), n, %, n; if it be 4n-41, the 2nth term will be
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D,

n, m, n, n+1; but every term will be composed of one or more square numbers + an
arithmetic number, and the squares and the arithmetic numbers will each form a regular
series. An example in figures will best explain this: 19=9410=44-54-545. If19

S ——
be increased by 2, 4, 6, 8, &c., the 9th term is 91=4, 5, 5, 5; so if 19 be increased by
2, 4, 6, 8, &c., the successive terms will be composed of squares and arithmetic numbers

as below: to distinguish the arithmetic numbers from roots, I enclose them in a Q

Numbers. | Roots. Numbers. | Roots.
19= 0,1 or=| (I7) | 1,1
21= 1,1 | = 1,2
25= L2 | =| @) | 22
s1=| (@) | 22| = 2,3
39= 2,3 | = @ 3,8
9=| GD) |83 | = 8,4
61= 8,4 | = 4,4
T5= 4,4 | = 4,5
91= 45 | = 5,5
(or 5, 5)
109= 5,5 = 5,6
& | &o &e. | &
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It may also be composed of one square and one arithmetic number in two different
ways, thus :—

Arith. | Roots, Numbers. | Roots.
9= 0 | or= 1
21= 1 — @ 9
26= @ 9 3
s1=| (32) 3 ® .
89=| (23) 4 5
49= 1 5 @ 6
6= (33) 6| = @ .
5= 7 — @ 3
0= @) g | = 0
109= 9 @ 10
120=| (29) | 10 11
151= 11 @ |
1= () | 12 @ | 1
201= @ 13 — @ 14
220= @ | _ @ 15
209= 15 =| (3) | 16
291= @ 16 — @ 17
325= 17 | @ |
361= @ 18 @ 19
399= 19 ) |

Again, if a number of the form 4n-1 be increased by 2, 6, 10, 14, &c., the series formed

2 : 2
will have its (2n+1)th term =0, 0, 20, 2n-+41; its (2n)th term will be =2n—1, 2n,
-+ @ ; the (2n—1)th term will be equal to 2(277,---2), 2n—1- @; the (2n—p)th term
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‘()2n—(p+1), (2n—p)+2(p+1); so that, whenever 2(p-+1) is coxﬁposed of not exceed-
ing 2 squares, the term is composed of not exceeding 4 squares; but the (2n+1)th

term will also equal (Zn—l) Zn-l—‘* the 2nth term will equal (2%—2) (2n—1)

+ [Sn—Z}, and so on,—the series of arithmetic numbers decreasing by 2, instead of

increasing. An example in actual figures will better illustrate this.

Series. | Roots. | Numbers. Roots. | Numbers.
19=10, 1 also=| 1,0
21=1, 2 | (16) = 0,1
=2, 3 1,2 | (22
87=13, 4| (12 =23
5l=|4, @ =| 3,4
69=15, 6 | 4,5
o1=6, 7| (6) —=| 56
17=|17, 8| (4 6,7 | (32
147=8, 9| (2 =178
181=| 9,10 | (0) = 89| (o

The first of these cannot be continued usefully, because the number becomes negative
after the 10th term, the other series continues.

219=110, 11
&e.

-2 = 19,10

&e.

r

&e.

If the odd number be increased by 4, 8,12, 16, &c., the series obtained will have

S —
similar properties; its 2nth term will be 0, 1, n, n, the roots », # will diminish by 1 in
each preceding term, and 1 will be an arithmetic number increasing by 2, as appears
below in the case of the odd number 19,

# If the form of the odd number be 42 + 8, the arithmetic number is 8n+4.
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Series. | Roots. | Numbers. Roots. | Numbers.
19= 1:1 @7) |also=| 0,0 | (1Y)
23=| 2,2 | (13 = 1,1 | (@1
sl=| 83| (19 | = 22| @)
8= 4,4 | (11) = 33| @)
59=1 5,5 @ =| 4,4 a7
79= 6,6 @ = 55
108=| 7,7 | (5) = 66| (31
181=| 88 (3) = 7.7 | (33
163=| 9,9 (1) =| 88 | (35

The numbers are alternately of the form 4n-1 and 4n—1; the terms of the series
are therefore equal to 2 squares + a number of the form 4n-}1, and to 2 other squares
+ a number of the form 4n—1. A number of the form 4n—1 cannot be composed of
less than 3 squares; for if ¢* and 4* be odd squares, their sum is of the form (8n+42); if
even squares, of the form (4n); if one be odd and the other even, (4n+1); and 4n—1
cannot equal 8n'42, or 4n”, or 4n”+1; but as the 2 squares are always equal, the
arithmetic number may always be turned into a number of the form 4n-1, by substi-
tuting for the 2 equal squares 2 others, whose roots shall be, the one one more, the

other one less; thué 79::(25,-6 + @ =§,'7-—l—5= g, 7,1,2; also=§75+ =%, 5,6,2.

And every term of the series is divisible into 4 squares whenever 4n4-1 is divisible into
2 squares, or when 4n'—1—2, another form of 4n--1, is so divisible. It would follow,
that if there be any 2 series in arithmetical progression with a common difference of 1,
and the odd terms of the one be placed over the even terms of the other, then if either
series be considered as composed of roots and the other of numbers, and the squares of
the roots be added to the numbers, a series will be formed of the first sort; thus

9, 8 7, 6, &c.

6, 7, 8, 9, &c.

If the lower be considered as roots, the series becomes

45’ 12 57, 14 71? 16 879 18 &C. 5
if the upper be considered as roots, the series is

873 16 717 14 57, 12 457 &Cw



SIR F. POLLOCK ON FERMAT’S THEOREM OF THE POLYGONAL NUMBERS. 419

the same series, but decreasing instead of increasing; and it is worthy of remark that
the first term of the series is the sum of the root and the arithmetic number, viz. 15.

If both the series decrease, as
9, 8, 7, 6, &c.,

6, b, 4, 3, &c.,
and the lower be considered as roots, the series is
45, 5 33, 23,415,

whose first term is 8, the difference between the arithmetic number and the root ; if the
upper be considered as roots, the first term is 3, but negative, and the series would be

‘—332 —1,4 3,6 936 173 10 279 12 &e. 87, 18 69, 16 53, 14 393 &e.

If the series be composed of 2 equal roots, increasing or decreasing each by 1, or of 2
roots differing by 1, and increasing or decreasing in like manner, then if the series of
numbers differ by 2, so that all the terms shall be odd, a series will be formed of the 2nd
or 3rd kind, whose second difference will be 4; thus if the numbers be 9, 11, 13, 15, &ec.,
and the roots 3, 3, 4, 4, 5,5, 6, 6, the series will be 27, ; 43,,, 63,,, 87, a series of the
3rd kind having a second difference of 4, and the first term will be the difference between
the number and the sum of theroots, viz. 9—(34-3); for 3,, 7,4 15, ,, 27 produces the
series; but if the numbers decrease by 2,
9, 7 5, 3, &ec.
(3,3), (4 4), (5,5), (6,6),

27,12 39,5 55,, 75,
and the first term of that series is the sum of the roots and the odd number, viz.
94-834-3=15, for 15, 19, 27, 39, &ec. is the series. '
So if the roots, instead of being equal, differ by 1, thus,
6, 8, 10, 12, &c.
3,4, 4,5, b, 6, 6,7, &c.,

the series will be

the series will be
: 31, 49,,, 71,, 97, &ec.,
a series of the 2nd kind, whose first term is the difference between 6 and 344, viz. 1,
and negative, and the series is '
—1,, 176 73 10 17, 31, 49, ,, 71: &ec.;

but if the numbers decrease, as

12, 10, 8, 6, &c.

3,4, 4,5, 5,6, 6,7, &c.,

the series is
37,1 61,5 69,, 91, &c,

and the first term is
19=12+434-4,

19,, 21,5 27,,, 37, 51, &c.
Some remarkable properties arise from connecting these series together, which I must
reserve for a future communication.
MDCCCLXI. 3M
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91 93 95 97 ‘ 99 103 105 109 111
1,9,0 1,8,2 38,0 3,72 1,7, 4 24 3,6,4 5, 6,2 B3 1,6,6 554
5, —4,5,5 |—5, —4,4,6 |—6,~3,5,5 |—6, —3,4,6 | -5, —4,3,7 —6,—3,3,7 | -7, ~2,4,6 —5,—4,2,8| -7, -2,3.7
73 75 77 79 81 85 87 91 93
0,81 2,7, 1 0,73 2,6,3 4,6, 1 % 453 2,55 ’I‘ 6»5a1 414, 5
—4,—4,4,5 | -5, —8,4,5 |4, ~4,3,6 |—5, ~3,3,6 | -6, —2,4,5 —6,—-2,3,6 | —5,—3,2,7 —7,—1,4,5| —6, —2,2,7
57 59 61 63 65 69 71 75 77
1,7,0 1,6,2 3,6,0 3,52 1,54 B4 344 5 4y 2 B4 1,4,6 534
—4,-3,4,4 |~4, -3,8,5 |5, ~2,4,4 |5, --2,8,5 {—4, —3,2,6 —5,-2,2,6 | —6,—1,8,5 ~4,-3,1,7| 6, -1,2,6
43 45 47 49 .51 55 57 61 63
0,6, 1 2,5, 1 0,53 2,453 4,451 54 4,33 2,35 B¢ 6,3, 1 4,2, 5
—3,-3,3,4 |4, -2,8,4 |—8,-3,2,5 |—4,-2,2,5 |5, —1,3,4 —5, —1,2,5 | —4, —2,1,6 —6,0,3,4 | —5,=1,1,6
31 33 35 37 39 43 45 49 51
1,50 1,42 3,4,0 3,32 13,4 53 3,24 52,2 e 12,6 51,4
~3,-2,3,3 -8, -2,2,4 |4, -1,8,3 |—4,-1,2,4 |3, ~2,1,5 —4,~-1,1,5 | —5,0,2,4 —38,—2,0,6] —5,0,1,5
21 23 25 27 29 33 35 39 41
0,4, 1 2,3, 1 0,33 2,2,3 4,2, 1 23 41,3 2, 1,5 P 6,1,1 4,0,5
~2,-2,2,8 -3, -1,2,3 -2, -2,1,4 |-8, ~1,1,4 | —4,0,2,3 —-4,0,1,4 | -3,-1,0,5 -5,1,2,8 | —4,0,0,5
13 15 17 19 21 25 27 ) 31 33
L30 5L,2,2 32,0 35,2 1, 1,4 % 3,0, 4 §,0,2 % ”0:6 5 =14
~2,-1,2,2 |~2,-1,1,3| —3,0,2,2 | —3,0,1,3 |-2,~1,0,4 —-3,0,0,4 | —4,1,1,3 —2,—1,~1,5 —4,1,0,4
7 9 11 13 15 19 21 25 27
0,2, 1 2,1, 1 01,3 2,0,3 4,0, 1 54 4, —1,3 2, =1,% g 6, —1,1 4, 2,5
-1,-1,1,2| -2,0,1,2 |-1,-1,0,3| —2,0,0,3 | —3,1,1,2 ~3,1,0,3 | —2,0,—1,4 -4,2,1,2 [~3,1, ~1,4
3 b 7 9 11 15 17 21 23

nLo 1,0,2 3,0,0 3 =12 L, —-154 ’I‘ 3H—24 §y ~2,2 >X< 1, =~2,6 5 =34
-1,0,1,1 —1,0,0,2 | —2,1,1,1 | —2,1,0,2 |~1,0, 1,3 -2,1,~-1,8| ~3,2,0,2 ~1,0,-2,4|-3,2, ~1,8
1 3 5 7 9 11 13 15 17 19 21
0,0, 1 2, —1,1 0, —1,3 2, =2,3 4y —2,1 4y, =3, 3 2, =35 6, =3,1 4y 4,5
0,0,0,1 | ~1,1,0,1 | 0,0,~1,2 |-1,1,-1,2 | ~2,2,0,1 -2,2,-1,2 | =1,1,-2,3 ~3,3,0,1 | -2,2 23
0 1 2 3 4 5 6 7 8 9 10
1 5 9 13 17 21 25 29 33 37 41
e 5
0,1 2,1 0,3 2,3 4,1 4,3 2,5 o 6,1 4,5




SIR F. POLLOCK ON FERMAT'S THEOREM OF THE POLYGONAL NUMBERS. 421
113 115 117 121 123 127 131
3,56 7,6,0 7,52 e 5,4, 6 T4 4 e 3,48 oy 950
—6,-3,2,8| —8, —1,5,5| —8, ~1,4,6 -7, —-2,2,8| —8, —1,3,7 —6,-3,1,9 —-9,0,5,5
95 97 99 103 105 109 113
6,43 0,57 2,4,7 " 6,35 437 e 8,313 B 04,9
~7,—-1,3,6| —4, —4,1,8! ~5, —3,1,8 -7,~1,2,7|-6,-2,1,8 —8,0,3,6 —4, —4,0,9
79 81 83 87 89 93 97
33,6 71440 732 " 52,6 7524 e 32,8 54 9 30
~5,-2,1,7| =7,0,4,4 | —7,0,3,5 -6,-1,1,7{ —-7,0,2,6 -5,~2,0,8 ~8,1,4,4
65 67 69 73 75 79 83
6’2!3 0,37 2,2,7 % 6, 1,5 41,7 ’x‘ 813 * 0,2,9
—6,0,2,5 | —3,—3,0,7| —4,-2,0,7 —6,0,1,6 | —5,—-1,0,7 -7,1,2,5 —3,-3,—1,8
53 55 57 61 63 67 71
3, 1,6 7)2,0 71,2 g 5,0,6 7,04 B 3,0,8 Mk 9, 1,0
—4,-1,0,6| —6,1,3,8 | —6,1,2,4 —5,0,0,6 | —6,1,1,5 —4,-1,-1,7 ~7,2,8,8
43 45 47 51 63 57 61
6)0»3 0, 1,7 2,0, 7 ’X‘ 6»'-1:5 4, —1,7 ’P 8’_"3 ’I‘ 0,0,9
-5,1,1,4 |—2,~2,~1,6|—3,—1,—~1, 6 —5,1,0,5 | —4,0, -1,6 —6,2,1,4 —2,-2,-27
35 37 39 43 45 49 53
3, =16 7,0,0 =12 4 5 —2,6 7 —2, 4 "L 3, —2,8 4 9, —1,0
-3,0,—-1,5| —5,2,2,2 | —521,3 —4,1,-1,5| —5,2,0,4 —3,0, 2,6 —6,8,2,2
29 31 33 37 39 43 47
6, —2,3 ¢, ~1,7 2, —2,7 >I< 6""3:5 4, —3,7 ’I‘ 8’_313 ’I4 0, —2y9
-4,2,0,3 |=1,-1,—2,5| —-2,0, —2,5 —4,2, —1,4| -3,1, -2,5 -5,3,0,3 -1,-1,-3,6
25 27 29 33 35 39 43
3, —3,6 7 =2,0 7 =32 " 5, —4,6 7 =44 e 3, ~4,8 Y 9, =30
—-2,1,~2,4] —4,81,1 | —4,3,0,2 -3,2,-2,4| —4,8, —1,3 -2,1,-3,5 -5,4,1,1
23 25 27 29 31 33 35 37 39 41
6, —4,3 0, —3,7 2, —4,7 6,—5,5 4 =57 8, ~53 6, ~4,9
-3,3,~1,2| 0,0, 3,4 { —1,1, —3,4 —3,8,—2,3/-2,2, —3,4 —4,4,-1,2 0,0, 4,5
1 12 13 14 15 16 17 18 19 20
45 49 53 57 61 65 69 73 77 81
6,3 0,7 2,7 2 6,5 4,7 2 8,3 2 0,9




